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Abstract

The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-

triads is presented using the generalized scaling of Lee (1997a). It is shown that

resonant-triads can interact nonlinearly within the common critical layer when their

(fundamental) Strouhal numbers are different by a factor whose magnitude is of the or-

der of the growth rate multiplied by the wavenumber of the instability wave. Since the

growth rates of the instability modes become larger and the critical layers become thicker

as the instability waves propagate downstream, the frequency-detuned resonant-triads

that grow independently of each other in the upstream region can interact nonlinearly

in the later downstream stage. In the final stage of the non-equilibrium critical-layer

evolution, a wide range of instability waves with the scaled frequencies differing by al-

most O(1) can nonlinearly interact. Low-frequency modes are also generated by the

nonlinear interaction between oblique waves in the critical layer. The system of par-

tial differential critical-layer equations along with the jump equations are presented

here. The amplitude equations with their numerical solutions are given in Part 2. The

nonlinearly generated low-frequency components are also investigated in Part 2.



1. Introduction

Boundary-layer transition usually starts with the spatially growing instabihty waves as

reviewed by Kachanov (1994). When the environmental disturbances are relatively small,

the upstream region is dominated by the linear two-dimensional instability waves. The linear

two-dimensional behaviour usually persists over long streamwise distances, but the flow

eventually becomes three-dimensional. The A-shaped structures that have been observed

in flow-visualization experiments can either be aligned or staggered in alternating rows.

It is believed that the staggered arrangement is the result of a resonant-triad interaction

between a pair of subharmonic oblique modes and the fundamental two-dimensional mode

(Kachanov 1994). As the flow evolves downstream, the initially small side-band instability

modes become large and the peak in the frequency spectrum becomes wider. Eventually,

all of the unsteady and steady flow components start to interact nonlinearly and the flow

becomes turbulent where it will be governed by the fully elliptic type equations rather than

by the equations that are parabolic in the streamwise direction.

A self-consistent theoretical analysis of the nonlinear interaction between frequency-

detuned instability waves during the boundary-layer transition process will be presented

in this paper. The matched asymptotic method in the high Reynolds number flow will

be used as in Goldstein & Lee (1992), who studied the resonant-triad interaction in the

adverse-pressure-gradient boundary layer. Since asymptotic analyses of instability waves in

high-Reynolds number flows, including critical-layer analyses, are well reviewed by Cowley

& Wu (1994), we will only summarize the results of the critical-layer analyses that are

closely related to ours.
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Goldstein, Durbin _z Leib (1987) investigated the nonlinear critical layer in the adverse-

pressure-gradient boundary layer for an evolving plane wave. They considered a disturbance

that evolves from a linear instability wave similar to the subsequent free shear layer analyses

of Goldstein _: Leib (1988) and Goldstein & Hultgren (1988). These analyses show that

the nonlinear effects first become important in the critical layer. The upstream exponential

growth of the linear instability wave is transformed into algebraic growth in the nonlinear

region.

It was found by Goldstein & Choi (1989) that a pair of oblique modes in a free shear

layer can interact nonlinearly within their common thin critical layer to produce a self-

interaction term in the amplitude equation. The self-interaction term causes the oblique

waves to grow very fast and ultimately leads to a singularity at a finite downstream posi-

tion. This oblique mode interaction can occur at much earlier strea.mwise position, or at

smaller amplitudes of the instability waves, than the nonlinear interaction of the plane wave

considered by Goldstein et al. (1987), Goldstein & Leib (1988) and Goldstein & Hultgren

(1988). Goldstein & Choi (1989) also showed that the nonlinear interaction between oblique

modes in the critical layer produces a steady mean flow correction term that is periodic in

the spanwise direction. The magnitude of this nonlinearly generated component is as big

as that of the primary oblique modes outside the critical layer.

In incompressible boundary layer flows, the plane-wave amplitude is usually much larger

than the oblique-mode amplitude in the upstream region because the plane wave is the most

unstable mode. Thus, the oblique mode interaction of Goldstein & Choi (1989) is not likely

to be observed in the early stage of the transition process unless three-dimensional modes

are artificially excited. The initial nonlinear interaction will then be a parametric-resonance



interactionasshownin the critical-layer analysis of the resonant-triad by Goldstein & Lee

(1992). During the parametric-resonance stage the growth rate of the oblique mode is

greatly enhanced. The parametric-resonance interaction produces no velocity jump across

the critical layer at the fundamental frequency. That means the two-dimensional wave

continues to grow at its initial linear growth rate even when the oblique modes become

very large relative to the plane wave. Goldstein & Lee (1992) showed that the oblique

modes eventually react back on the plane wave in the fully-coupled stage. The oblique

modes also interact nonlinearly between themselves, during this stage, to produce a serf-

interaction term. This term, which was originally obtained by Goldstein & Choi (1989) in

the free shear layer analysis, causes the instability growth to increase beyond the faster-than-

exponential growth of the parametric-resonance stage and ultimately leads to a singularity

at a finite downstream position. Essentially the same amplitude equations were obtained

by Wu (1992) for the resonant-triad interaction in the oscillating Stokes layer.

Wu, Lee _ Cowley i1993) included the effect of O(1) viscosity in the critical layer in the

oblique mode amplitude equation for the oscillating Stokes layer. Increasing the viscosity

generally delays the occurrence of the finite-time singularity. By taking the highly viscous

limit of the finite-viscosity amplitude equation, they found that the diffusion layer that

surrounds the critical layer must be considered in the viscous quasi-equilibrium critical-

layer analysis. The full finite-viscosity amplitude equations including the back-reaction

term in the plane-wave amplitude equation were obtained by Wu (1995).

Mankbadi, Wu & Lee (1993) and Wu (1993) showed that, in the Blasius and favorable-

pressure-gradient boundary layers, respectively, the dominant nonlinear interactions take

place in an intermediate diffusion layer that surrounds the critical layer when the viscous
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effectis large. Thereis no back-reaction effect on the plane wave which therefore continues

to grow linearly.

In the non-equilibrium critical-layer analysis by Goldstein & Lee (1992) and Wu (1992),

the growth and mean convection (and also viscous) effects can enter the critical-layer dy-

namics at the same order. However, when the viscous effect becomes large as in Mankbadi

et al. (1993) and Wu (1993), the mean convection effect balances with the viscous effect

inside the critical layer, which we refer to as a (viscous) quasi-equilibrium (or viscous-limit)

critical layer.

Wundrow, Hultgren & Goldstein (1994) considered the resonant-triad interaction in

the adverse-pressure-gradient boundary layer when the initial amplitude of the oblique

mode is small enough so that the plane wave can become strongly nonlinear within its own

critical layer (as in Goldstein, Durbin & Leib 1987) before it is affected by the oblique

mode. Goldstein (1994, 1995) extended the analysis of Wundrow et al. (1994) to the

Blasius boundary layer when the initial oblique-mode amplitude is sufficiently small at the

start of the parametric resonance. The streamwise evolution of a pair of oblique ToUmien-

Schlichting waves in the Blasius boundary layer was studied by Wu, Leib & Goldstein

(1997).

The ToUmien-Schlichting waves in the boundary layers axe initially governed by quasi-

equilibrium critical-layer dynamics as in Mankbadi et al. (1993), Wu (1993) and Wu et al.

(1997). However, the results of the analyses by Goldstein (1994, 1995) and Wu et al. (1997)

and the numerical solutions of Lee (1997a) (who solved the partial differential critical-layer

equations numerically) indicate that the critical layer in the later downstream stage is

eventually governed by the non-equilibrium dynamics and the amplitudes of the instability



modesaredeterminedby the inviscid or finite-viscosity amplitude equations (Goldstein &

Lee 1992; Wu 1992, 1995; Wu et al. 1993) or by the system of critical-layer equations (Lee

1997a) with negligibly small linear growth rates.

Lee (1997a) developed the generalized scaling which can be applied to both the non-

equilibrium and quasi-equilibrium critical-layer analyses of zero- and non-zero-pressure-

gradient boundary layers. He showed that the scalings in the boundary-layer analyses

mentioned above can be recovered by appropriately choosing the parameters introduced in

his generalized scaling. The result of the generalized non-equilibrium analysis was presented

and the system of partial differential critical-layer equations was solved numerically. Lee

(1997a) showed, by extending the analysis of Wu et al. (1993), that the quasi-equilibrium

amplitude equations of Mankbadi et al. (1993) and Wu (1993) can also be derived by taking

the viscous limit of the finite-viscosity amplitude equations.

The results of the critical-layer analyses mentioned above show that the later down-

stream stage of the critical-layer evolution is governed by the non-equilibrium dynamics and

the amplitudes of the instability waves become singular at a finite downstream position. The

self-interaction between oblique modes is mainly responsible for the explosive growth near

the singular point. The thickness of the critical layer becomes very large near the singular

point since it is proportional to the magnitude of the growth rate of the instability mode.

However, so far, only a single resonant-triad or a pair of oblique modes of the same

frequency has been considered in the previously mentioned studies. In this paper, a system

of resonant-triads whose frequencies (of the fundamental waves) are slightly different will be

analysed. The frequency-detuned resonant-triads can interact between themselves within

the common critical layer when the magnitude of the frequency difference is the same order



as that of the growth rates multiplied by the wavenumbers of the instability waves (Lee

1997b, 1998a).

The growth rates of the instability modes become larger and the critical layers become

thicker as the instability waves propagate downstream. The resonant-triads, which initially

grow independently of each other since their fundamental frequencies are sufficiently de-

tuned, start to interact nonlinearly in the downstream position where their growth rates

become large enough to be equal to the magnitude of the phase speed difference (or the

frequency difference divided by the wavenumber). This implies that most of the unstable

waves whose scaled frequency differences are nearly O(1) can interact between themselves

right before the triple-deck stage where the magnitude of the growth rates and that of the

wavenumbers are the same. The flow in the triple-deck stage will be governed by the un-

steady, inviscid, three-dimensional triple-deck equations (Goldstein & Lee 1992, 1993; Wu

et al. 1997).

The overall plan of the paper is as follows. The problem is formulated and the gener-

alized scaling is presented in §2. The non-equilibrium critical-layer analysis is given in §3

to §7. The solutions in the main boundary layer are given in §3 and those in the viscous

Stokes layer are presented in §4. In §5 we show that the linear ToUmien solution in the

inviscid wall layer can be matched onto the solutions of the main boundary layer and of the

viscous Stokes layer. The derivations of the critical-layer equations and the jump conditions

are explained in §6. The system of partial differential critical-layer equations and the jump

equations with appropriate upstream matching conditions are presented in §7. The ampli-

tude equations which are obtained by solving the system of critical-layer equations in §7

analytically will be presented in Part 2 (Lee 1998b) together with their numerical solutions.
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The low-frequencyspanwise-periodiccomponentsthat are generated by the oblique-mode

interaction in the critical layer will be investigated in Part 2.

2. Formulation and scaling

The streamwise, transverse and spanwise coordinates x, y and z are normalized by the

local boundary-layer thickness A. The mean flow velocity U and the total flow velocity u =

{u, v, w} are normalized by the local free-stream velocity Uoo. The pressure p is normalized

by pU_ and the time t is normalized by A/Uoo. We suppose that the mean boundary-

layer flow is nearly two-dimensional and the local Reynolds number Ra(= UooA/u) is

sufficiently large, so that the unsteady flow is nearly unaffected by boundary-layer growth

over the region where nonlinear interaction occurs. The base mean flow is nearly parallel

and develops slowly on the long viscous scale,

xv=xlRa. (2.1)

The normalized complex wavenumber a of an unstable mode is small and its imaginary part

is much smaller than its real part (Drazin & Reid 1981; Smith & Bodonyi 1982; Goldstein

et al. 1987).

Following the generalized critical-layer scaling of Lee (1997a), we introduce the wavenum-

bet parameter a and the growth-rate parameter a _ to characterize the small wavenumber

and the ratio of the small growth rate to the wavenumber, respectively. We are inter-

ested in the nonlinear interaction of a system of instability waves which is composed of

2J Jr 1 resonant-triads (Lee 1997b, 1998a). The jth resonant triad is composed of a sin-

gie two-dimensional mode of frequency w_ and wavenumber %, and a pair of subharmonic



obliquemodesof frequencyw3/2, streamwise wavenumber nearly equal to %/2 and spanwise

wavenumbers -1-_, where the subscript 3 can vary from -J to J. The phase speed of the

plane wave is assumed to be equal to that of the oblique modes of the same resonant-triad

to the required level of approximation, which is the phase-speed resonance condition for the

single-resonant-triad interaction. This resonance condition is satisfied when the propaga-

tion angle of the oblique mode, defined by (5.29), is about r/3. It is assumed, in addition,

for the multi-resonant-triad interaction that the phase speeds (of the plane waves) of the

resonant-triads are nearly equal to one another.

The non-equilibrium critical-layer analysis of a system of resonant-triads will be ob-

tained with the generalized scaling of Lee (1997a). The mean convection effect balances

with the growth and viscous (in the finite-viscosity case) effects in the non-equilibrium crit-

ical layer (Goldstein & Lee 1992). The recent studies by Goldstein (1994, 1996), Wu et

al. (1997) and Lee (1997a) indicate that the later nonlinear critical-layer stage is governed

by the non-equilibrium dynamics of Goldstein _: Lee (1992) even though the earlier stage

is governed by the quasi-equilibrium dynamics of Mankbadi et al. (1993) and Wu (1993).

We only present the details of the non-equilibrium critical-layer analysis since the nonlinear

interactions between frequency-detuned instability waves axe important in the later stages

of the streamwise evolution of instability modes. However, as will be given in Part 2, we

can easily obtain the frequency-detuned quasi-equilibrium amplitude equations by taking

the viscous limit (Wu et al. 1993) of the finite-viscosity amplitude equations as shown by

Lee (1997a) for the single-resonant-triad case.

The generalized scaling of Lee (1997a) can be written for the non-equilibrium critical-



layeranalysisas

,_:= o[,_:+0(o")], _:= ,[ej+o(o')], c,= ,[e:+o(o")], /_,= ,_/_:,yc,= o-Yc:,(2.2)

xl = a'+Iz, (2.3)

#=at-l/2 for 1_<r_<3 and /_=O(1) for 0<r_< 1, (2.4)

where a characterizes the small wavenumber as mentioned before, _: and c: are the (nearly

equal) phase velocities of the two-dimensional and oblique modes respectively,/3: represents

the spanwise wavenumber of the oblique modes, Ycj is the critical level where the base mean-

flow velocity is equal to the real part of the phase velocity, a3, cj,/_: and Yc: are order-one

real constants (which depend on a) and/z(= RadP/dx) is the normalized mean pressure

gradient. The subscript 3 is used to denote the quantities of the jth resonant triad. The

real part of _: is only different from that of c: by O(a _+1) as required by the phase-speed

resonance condition for the single-resonant-triad interaction. When r is equal to 3 and/_

is an order-one real positive constant, a_-_ << 1 characterizes the small adverse pressure

gradient as in Goldstein & Lee (1992). However, we now allow /2 to be non-positive in

order to extend the scaling to the Blasius and favorable-pressure-gradient boundary layers.

The magnitude of _ could be smaller than O(1) in many important cases, i.e. in the

later downstream stages of the nonlinear evolution of instability waves in boundary layers

(Wundrow et al. 1994; Goldstein 1994, 1996; Wu et al. 1997; Lee 1997a).

The scaled Strouhal number _:, which is a real constant, of the fundamental two-

dimensional mode of the 3th resonant-triad is given by

,s: = 0"2,{: = o'2¢&:_'_, (2.s)
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where the frequency or unscaled Strouhal number s_ of the plane wave is equal to a_j (see

(3.7)). We are interested in the case when the scaled Strouhal number of the jth resonant-

triad is different from that of the 'reference' 0th resonant-triad by a small factor whose

magnitude is of the order of the growth-rate parameter a _,

_3 = ,_0(1 + ar3X) for - J _<j _< J, (2.6)

where the frequency-detuning factor X is an order-one real constant. It will be shown

by (5.22) that the scaled phase velocities c3 for j = -J,..., J are different one another by

O(ar), therefore, the additional resonance condition for the multi-resonant-triad interaction

is satisfied.

If the Strouhal number s_ and the small parameter a are chosen (these paxameters

can be chosen from experiments and appropriate scalings for the specific problem), the

wavenumber (_ can be determined from the long-wavelength small-growth-rate dispersion

relations (5.8) - (5.13) in §5. The phase speed _ can be obtained from (2.5) and then the

critical level y¢_ which is defined as the transverse location where

U (y = Ycj) = aej, (2.7)

is determined if the base mean flow U is known.

The non-equilibrium critical-layer analysis by Goldstein & Lee (1992) shows that the

nonlinear interaction between instability waves of a resonant-triad first occurs within the

critical layer whose thickness is of the order of a r+l. When _ is given by (2.6) the critical

level of the 3th resonant-triad, ycj is only different from that of the 0th resonant-triad, Yco by

O(a r+l) (see (5.22)). Therefore, all of the instability waves of the detuned resonant-triads

will then nonlinearly interact between themselves within the overlapped critical layers.
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Theviscouseffects will enter the critical-layer momentum equation while making only

relatively insignificant modifications to the external flow when the viscous parameter (Ben-

ney& Bergeron 1969; Haberman 1972)

= 1/( 3r+4RA) (2.8)

is order one. The scalings for the amplitudes are, following the previous studies by Goldstein

& Lee (1992, 1993) and Lee (1997a), for all 3,

e2d = a 4r+l, _3d = $02 = a3r+l, (2.9)

where e2d and 63_ are the amplitude scalings of the two-dimensional and oblique waves. The

nonlinear interaction between oblique modes in the critical layer produces a term which is

periodic in the spanwise direction (Goldstein & Choi 1989). This term is large in the sense

that its magnitude _02 is equal to _3d. This nonlinearly generated term becomes a function

of a slow time, as will be shown in (5.30), in the multi-frequency and multi-resonant-triad

cases considered in this study, though it is independent of time in the single-frequency

(Goldstein & Choi 1989) or single-resonant-triad (Goldstein & Lee 1992) cases.

The nonlinear interactions between instability waves occur within the critical layer

whose thickness is of the same order of magnitude as the growth rate, i.e. O(ar+l). We

do not need to include the diffusion layer (c.f. Mankbadi et al. 1993; Wu 1993) since it is

inseparable from the critical layer in the non-equilibrium critical-layer scaling (Lee 1997a).

The viscous Stokes layer does not make a leading-order contribution to the growth rate in

the non-equilibrium analysis. However, in order to make the analysis valid in the viscous

limit we will include the effect of the viscous Stokes layer whose thickness is of the order

of o"3r]2÷1. A schematic diagram of the multi-layer structure is given in figure 1 with the
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critical levels of the 0th, Jth and -Jth resonant-triads indicated. The distance from the

wall to the 3th critical level is Yc3 that is of O(a) (see (5.22) for their relative positions).

Finally, we will assume that 0 < r _<3 for the simplicity. This range of r covers most of

the important types of boundary-layer flows as was summarized in table 1 of Lee (1997a).

3. Main boundary layer

Since the unsteady flow outside the critical layer is mostly governed by linear dynamics

to the required order of approximation, the velocity field of a system of 2J+ 1 resonant-triads

in the main boundary layer, where y is of order one, can be written as

J J

u -- U(y, xv) + _2d E Re/_3_ eix' + _3d E Re2"4j]3( y,x:)eixJ2 c°sZ3
3=-j 3=-J

xl, t) +...,
3 f

(3.1)

J

v = V(y,x_,) - e2d _ ReicbBj(x:)i_3(y, xl)eiX'
3-_- J

J

-_3d E Re2i73A3( xl)¢3(y'xl)eix'/2 cos Z3 +...,
3=--_-J

J

w = _3a _ Re2i]i3ITV3(Y, Xl) eix'12 sin Z 3 +...,
3=-J

J J

p---- P + e2d _ Re[_3P3(y,x:)e ix' + $3d E Re2A3P3 (y,x:)eix'/2 c°sZ3 + "'"
3=-J 3-'=-J

with

(3.2)

(3.3)

(3.4)

X 3 - as,3x - a_3t, Z3 - a_3z, (3.5)

where Re denotes the real part, x. and x: are defined in (2.1) and (2.3), and e2d, 53d and

602 are given in (2.9). Since s3, a s and/_ are real X 3 and Z 3 are real, but we allow the

oblique-mode amplitude A3 and the plane-wave amplitude/_3 of the ?th resonant-triad to be
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complex. The mean flow pressure P is a function of x in general and the pressure gradient

dP/dx that is equal to #/Ra is scaled by (2.4). The last unsteady term in (3.1) is induced

by nonlinear effects in the critical layer. We are interested in the case when the amplitudes

of the oblique modes with positive and negative propagation angles are the same. The pair

of oblique modes with the same amplitude forms a standing three-dimensional wave that

propagates only in the streamwise direction.

The mode shapes _ and _3 satisfy the Rayleigh's equations to the required levels of

approximation

(U - d:)(D 2 - _,2)_: _ U"t}: = 0, (3.6)

and the complex wavenumbers aj and % and phase speeds _: and c: are given to the required

order of approximation by

q:=a + =
ik_:A,)' ca (3.7)1+

where the prime denotes differentiation with respect to the relevant argument, D = 0/c0y,

^ . - ..

and {A:, ¢3, c:, "_:,4:, k) can denote either {Bj, ,I,:, c3, %, 6:, 1} for the two-dimensional wave

or {'43,/I,:, ca, 7:, 7:, 2} for the oblique modes. We define _: as

- 2+ (3.s)

Instead of solving (3.6) with the leading-order inviscid wall boundary condition (Goldstein

& Lee 1992; Wundrow et al. 1994; Lee 1997a), we will appropriately match the solution of

(3.6) with that of the viscous Stokes layer.

By substituting (3.1) - (3.4) into the continuity and momentum equations we can show

that (Goldstein & Lee 1992)/7:, l?dj, _5 and P: can be expressed in terms of (I)j, Da:, ;_:
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p;=.y;u'i ,l (.yy- n})'i_- (u - <,)0;, (3.11)

[_ = U'I_ - (U - _) Di_. (3.12)

When r > 1, the mean flow U(y, xv) can be written as (Goldstein & Lee 1992; Mankbadi

et al. 1993; Wundrow et al. 1994; Lee 1997a)

U = UB + a'-'Up + l](y, xv) for y = O(1), (3.13)

where UB is the Blasius velocity and ar-l_'p is a small correction due to the pressure

gradient. As y approaches the wall, which is assumed to be located at y = 0,

7-2 llr 3 7 ( 12 )o 4 , (3.14)uB-_oY-2-_.,y +4-_.,y +..., 0_-_ -_y+_y +...

where the constant 7-o(- 0.332) denotes the scaled Blasius skin friction and/2 was defined

in (2.4). The total wall-shear stress r,_ that is the sum of the Blasius skin friction and the

correction due to the mean pressure gradient can be written as (Wundrow et al. 1994)

r_ =to- ar-ipf. (3.15)

When 0 < r _< 1, the correction term due to the pressure gradient is not small any

more since the magnitude of the mean pressure gradient/_ could be of order one as in (2.4).

Therefore, (3.14) and (3.15) should be replaced by (Wu 1993)

1 2
U --_ r,_y + _#y + ... as y --* O. (3.16)
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In the followinganalysis/2 will be treated as an order-one quantity. However, the results

will also be valid for 0 < r _< 1 if/2 is replaced by al-rtt.

The terms /_(y, xv) and V(y, xv) in (3.13) and (3.2), which are functions of the long

viscous scale x. given by (2.1), are included due to the slow viscous spreading of the base

mean flow and they can be found by expanding the mean flow solution about x = 0.

However, they do not make any major contribution to the unsteady flow over the entire

streamwise region in which the nonlinear interaction takes place since the local Reynolds

number is assumed to be sufficiently large.

As in Goldstein et al. (1987), Goldstein & Lee (1992), Wundrow et al. (1994), Lee

(1997a), and others, the matching can be simplified by using the Miles' (1962) solution,

which is obtained by transforming (3.6) into a Pdccati equation, and the classical inviscid

function (Lin 1955). The latter is written as

_D_
(3.17)

where }4;j can denote either _i;_ for the plane wave or W 3 for the oblique modes. Substituting

the solution by Miles (1962) along with (3.7) into (3.17), expanding for small a, and using

(3.13) to (3.16) as in Goldstein & Lee (1992), we obtain

c'3U' o'c, rw ( a2c2J3 y2)1_ - "_(1 - a_) 2 (1 - a_) 4 J1 + a2_J2 + + _rw ÷ a2_r_' (2J4 + a_Js)

+ ,_z+/2o,lny + +... (3.18)
4r_ 48r_ r_ % _ % / _ '

where the constants J1 to Js are given in Appendix A of Lee (1997a) and we have put

/2_ --/2 - a3-_ (½,oY_,) 2 (3.19)
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Wehavealso used the fact that

-,,,-, %re/,.)+..., (3.20)

which is obtained from (2.2), (2.7) and (3.13) - (3.16). The above equation (3.20) determines

Yea once _a is known.

4. The viscous Stokes layer

As shown in Goldstein & Lee (1992), Wundrow et al., (1994) and Lee (1997a), the

viscous Stokes layer adjacent to the wall does not make a leading-order contribution to

the growth of the instability wave in the non-equilibrium critical-layer analysis. This thin

viscosity dominated layer, however, produces an order-one growth term when the ToUmien-

Schlichting waves are considered as in the quasi-equilibrium analyses by Mankbadi et al.

(1993) and Wu (1993). It was pointed out by Wu et al. (1993) and shown in detail by

Lee (1997a) that the quasi-equilibrium amplitude equations of Mankbadi et al. (1993) and

Wu (1993) can be alternatively derived by taking the viscous limit of the finite-viscosity

amplitude equations provided the viscous Stokes layer effect is appropriately included in the

the linear growth rates. Goldstein & Lee (1992, 1993) identified these correction terms by

comparing their results with those of the quasi-equilibrium critical-layer analyses. In this

section, the unsteady flow in the viscous Stokes layer will be analyzed in order to obtain,

in a systematic way, the linear growth rate of the instability wave that is also valid in the

viscous limit.

The generalized scaling by Lee (1997a) shows that the viscous Stokes layer for the
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non-equilibriumcritical-layer analysis is scaled as

y = a3r/2+l_).

If we substitute (3.1) - (3.4), (4.1) and

_j = U3r/2"t'l_3 '

(4.1)

(4.2)

into the continuity and momentum equations, we can obtain

i5 3+
where {_, _,, k} can denote either {¢,, _, 1} for the plane wave or {_, ¢j,2} for the

oblique modes and the base mean flow U is given by (3.13) to (3.16). The bounded solution

which satisfies the no-slip boundary condition at the wall (_ = 0) is

= _-(3r/2+l)v+ (T_/b,)(e-_,_- 1_, (4.4)
k /

where

1 1/2
= (1 ÷i) (_k_/_,) • (4.5)

It is easy to show from (4.4) that

_ _ a-(3r/2+l)V - Twl_) J aS _ --*oo. (4.6)

This will be matched with the inviscid wall layer solution in the following section.

5. The inviscid wall layer

The analyses of Graebel (1966) and Nield (1972) suggest that we have to introduce the

scaled transverse coordinate

Y - y/a (5.1)
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directly into (3.6)beforeattemptingto obtain the solution. The solution is of the form

@j = arwY + ar+lF_(Y,¢_) + ..., (5.2)

where the integration constant ¢_, which can denote either ¢_ or ¢_ for the plane or oblique

waves respectively, is a complex function of xa in general. Matching (5.2) with the viscous

Stokes-layer solution (4.6), along with (3.13)- (3.16), (4.1), (4.2) and (5.1), shows that F_

must satisfy

F_-_-a"i%_,lb J as Y_O, (5.3)

where 63 is given by (4.5).

We can show that Fj, which satisfies the above matching condition and can be discon-

tinuous across the critical level Yc_, is given by

F_ = fj(y) + ipcjycj [(y - ycj)¢_ + Yej¢-_] - ar/2v_/b3 + .. ., for Y>Ycj, (5.4)

where

(5.5)

and ]2c_isgiven by (3.19).The lastterm in (5.4)was added due to the effectof the viscous

)'"Stokes layer and becomes (1 + i)r_, ka'Al_ if we substitute (4.5). Its magnitude is

of higher order, i.e. O(a_/2), in the present finite-viscosity case, but it will be of order one

in the viscous-limit (quasi-equilibrium critical-layer) case where A becomes O(a-r). The

rescaling of A in the viscous limit will be given in Part 2 (also by (8.8) of Lee (1997a)). It is

obvious that we need to include more (inviscid) terms (Wundrow et al. 1994) on the right

hand side of (5.4) in order to make that to be uniformly valid up to O(a_/2). However, in
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the following analysis, we will keep the viscous correction term as in (5.4) and treat it as

if the magnitude of arA is of order one since we are mostly interested in the leading-order

effect of that term in the viscous limit.

In the later non-equilibrium critical-layer stage, r becomes smaller than 3 as summa-

rized in table 1 of Lee (1997a) and _ is also likely to become negligibly small as in Wundrow

et al. (1994). Thus, _c_ defined in (3.19) becomes negligibly small so does the linear velocity

jump across the critical layer. When/_c_ << 1, (5.4) can be explicitly rewritten as

-a"/2r_,Ib.7+..., for Y>Y,., (5.6)

where #_N)± accounts for the O(I) nonlinearjump while /2,j¢_L)± accounts for the very

small linearjump. However, forthe simplicity,we willtreat/2,_as an O(I) quantityand

(5.4) will be used instead of (5.6) in the following analysis. The result will be still valid

even when _o << 1 if _c_¢_ is simply replaced by _N)± +/_cj_L)±.

Inserting (3.13) - (3.16), (5.1), (5.2), (5.4) and (5.5) into (3.17) and re-expanding, we

obtain

_,--+_.:"_"_;_-,_-_to,-to,_(_;__+ _:_,_(_o,+½_)+ _:,+...,
(5.7)

for Y > Yc3. The inviscid function (5.7) in the inviscid wall layer will be matched with that

in (3.18) obtained in the main boundary layer as explained below.

The (linear) real part of the wavenumber of the 3th resonant-triad _3 in (2.2) possesses

a power-series expansion

_,=_o_+a_1_+:_I +...+:(in_)_r'_+:_?)+.... (5.8)
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Matching (5.7) with (3.18) along with (2.5), (3.13) - (3.16), (4.5) and (5.1) for the lth plane

wave where {,4:, _:, _)_, k} must be replaced by {/_:, &:, ¢?, 1 } shows that (Goldstein _g Lee

1992; Wundrow et al. 1994; Lee 1997a), for 0 < r _<3,

and

6_0) = (r_a,)l/_, (5.9)

(_l)=$:(l_½rwj1) if r > 1,

_2) _. 1+(Tw_3)1/2 [3Jl 4. 2J2 1._T=(j 12 4. 8J4)]

(5.10)

if r > 2, (5.11)

(5.12)

÷J3 - r_Js + (7/48+ l(r_Ycff_:)21nY_z}/r 3] + a['-']5_ ') 4-a[1-dS_ 1), (5.13)

_-_- 2_'_ [ vw \_f] , (5.14)

where a[n-r] is defined to be equal to a n-r if n i> r or equal to zero when n < r, tic: is given

by (3.19) and J1 to J5 are given in Appendix A of Lee (1997a).

The above equations (5.9) - (5.13) are the usual long-wavelength small-growth-rate

dispersion relations that determine the wavenumber (}z in terms of $:. The phase speed

_ which possesses a similar expansion to (5.8) is determined by (2.5). The complex plane

wave amplitude/_: of the j resonant-triad is determined by the phase-jump equation (5.14).

The effect of the viscosity now appears as the second term on the right hand side of (5.14)

and always increases the growth rate. The phase jump ¢_- - ¢+ across the critical layer

can be obtained by considering the critical layer and is equal to the sum of -_r and a

complex function of Xl as will be shown in §6 (Drazin & Reid 1981; Goldstein & Lee 1992).
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The former and the real part of the latter represent the linear and nonlinear growth rates,

respectively, while the nonlinear correction of the wavenumber is given by the imaginary

part of the latter. The linear part of the wavenumber, _: has been fully determined, up to

the order of a r, by matching as given by (5.8) - (5.13) (Wundrow et al. 1994).

As shown above, O: and _: have been determined from the matching of the plane-wave

inviscid functions. The wavenumber _ can now be determined by matching the inviscid

functions of the oblique modes. It is convenient to put

and then from (3.8)

_r3K

(5.15)

(5.16)

where Ks will be determined from matching. By matching (5.7) with (3.18) along with (2.5),

(3.13)- (3.16), (4.5), (5.1) and (5.16) and replacing {A3,_,_)_, k) by {.4_,_,¢_, 2} for the

oblique modes, we can show that

where _;v: appears due to the viscous Stokes-layer effect. Since we have chosen _s in (5.15)

to be the same for all .7, which we put

,<.: - ,

the higher-order 3-dependent correction term _ must be included in (5.17),

- - -2-1/2 -2 -2-1/2
,<,,::(_-l)(<,'_,)'i_(=i, Ic,D[<_:%l(<:_:)-,:,0/(%_o )]. (5.19)

Using (2.6), (5.16), (5.21) and (5.22), we can show that the magnitude of _v: is of the order

of a_(a_)_) 1/2. The phase jump ¢_" - ¢+ is equal to -r (for the linear growth rate) plus
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a complex function of xl (whose real and imaginary parts represent the nonlinear growth

rate and the nonlinear wavenumber correction, respectively).

It is easy to show from (3.1) and (3.5) that the nonlinearly corrected streamwise

wavenumber of the oblique mode becomes aC_3/2 - ar+ll_eiA_/.43. Thus, the nonlinear

propagation angle of the jth oblique modes, +_}a can be computed, up to O(ar), by

(5.20)

where &_ and/_ can be evaluated from (5.8) - (5.13), (5.15) and (5.18). As we expected

(Goldstein &: Lee 1992), _}jbecomes _r/3 at the leading order.

The result presented so far is basically a linear superposition of the (modified) results

of the single-resonant-triad analyses by Goldstein & Lee (1992) and Lee (1997a) since the

unsteady flows in the main boundary layer, viscous Stokes layer and inviscid wall layer are

governed by the linear dynamics to the required order of approximation.

From (2.5), (3.19), (3.20), (5.8) - (5.13), (5.15), (5.16) and (5.18), the quantities of the

3th resonant-triad can be expressed in terms of the 'reference' 0th resonant-triad, when $_

is given by (2.6),

5_= 5(1 + _r½_),

_/_= 1+ o"½Jx+ ...,

where

_=_+ar_ff(5, q3 = _ + ar½./_5 + ..., (5.21)

Yc_/Y, = 1 + ar½1X +..., fic_ = f_, + O(a3), (5.22)

/
o._(1)/5 a22(}(2)/5

\

=xti+ + +--.), (5.23)

and 5 (1) and &(2) are given by (5.10) and (5.11). We have omitted in the above equations

and we will omit in the rest of this paper the subscript 0 for the quantities of the 'reference'

Oth resonant-triad for notational simplicity.
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It is convenient to introduce the slow time tl and the slow spanwise coordinate zl which

are defined as

tl = ar+2x_t, zl = a r+1 4"_)_z. (5.24)

By using (2.6), (5.21) and (5.24), we can show that Xj and Z_ defined in (3.5) become

X_ = x - jt_ + ½.7_,_zz, Z_ = Z + jzx. (5.25)

If we put

.A3(Xl ) -- A3(Y,1)ei3x_Xl/4, D,(_I) = B,(_x)ei_*'/2, (5.26)

and use (5.19), (5.21) and (5.22), the phase-jump equations (5.17) and (5.14) can be rewrit-

ten as, for -J _<3 _< J,

\Aj -- 41)_) = --_-'_2 ['-_w[_cyc2 (¢;- _)- (?)1/2] , (5.27)

B; i _2 [p:y_ (__ __+)_ \-_'g J (5.28)

where/2c for the 0th resonant-triad is given by (3.19) and 0 is defined as

,-_-<:os-,(,<,,/.,,), (5.29)

which is the same, but arReiA_/._, as the nonlinear propagation angle 0 in (5.20) when

3 = 0. The relation (5.16) shows that 8 is r/3 at the leading order, but it can be fully

determined because _ and _ are known from (5.8) to (5.13), (5.16) and (5.18).

Tlle phase jumps across the critical layer will be determined from the nonlinear analysis

within the critical layer. Since we are interested in the instability waves that are spatially

growing in the streamwise direction in the linear upstream region, they will continue to

grow only in the streamwise direction as they propagate downstream. The amplitudes A_
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and/_: arecomplexfunctionsof xl but are independent of tl and zl. The wavetrains (Wu,

Stewart & Cowley 1996) which can grow in the slow time and in the spanwise direction will

be considered in a subsequent paper.

Equations (5.1), (5.2), (5.4), (5.5), (5.21) - (5.23) along with (3.9) - (3.16) show that

(3.1) - (3.4) can be rewritten in this inviscid ToUmien region as (Goldstein & Lee 1992; Lee

1997a),

2 J

u = av_Y + a r+11-5#Y2 - a4 2.r['4! y4 _{_e2d Z Re [r_ + a r (fr + iJ2cYc¢_)]/_E:
3=-J

J f a _( 'sin 2 0) [f + c'fY
_,1 4- + -_ 7L L Tw( tan 2 9"_'_3d Z 2r_(sec0)Re ¢(sin20) [1 arllx(1 ¢)] +

._-J

+½pY2(1- Q- a3-_7:_ (3- () - _ cos0+ _ c-"_s0] -t-_r,_ ¢_- -t-_¢ sin 2 O

i,_o: + eo_ _, )-_'_Re00,2;,xe-i,''/2 cos[2Z+ (3+ 2_)Zl]
1=-2J t

+..., (5.30)

J

V ---- --0 .2 _._
i

.r=-J

Re [e2d (rwY ÷a_ificYc(Y-Yc)_P_ ÷ ...)iO/}zE:

+_f3d {r_,Y +a_ipcYc(Y-Yc)¢_ ÷ ...} 2i_-4fl_c:] + ..., (5.31)

J

w=--_3d Z 2(sin0)Reir_¢fi_fl_8: +..., (5.32)

3---J

J

p = P + _ a_v_Re [E2dB_E: + _3d2(COsO)A:Ec_] +..., (5.33)
3=-J

where e2d, _3d and _f02 are given by (2.9), f and Pc are given by (5.5) and (3.19) and we

have put

E: -- ei(X-:t'), Ec: =- ei(X-:tl)/2 cos(Z + yzl), F's3 - ei(X-Jt')/2 sin(Z + jzl), (5.34)

and

( - _/(r,_Y - _). (5.35)
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In the streamwise velocity (5.30), the term rla _JX(1 + () appears because the quantities

of the lth resonant-triad are expanded about those of the 0th resonant-triad as in (5.21) -

(5.23) and the term which is proportional to (ar_/3) 1/2 is included due to the viscous Stokes

layer effect. The last term on the right hand side of (5.30) that is a function of the slow

time tl is included in order to match with the critical-layer solution. The O(a _+2) terms

that are continuous across the critical layer are not shown in (5.31) since they do not play

any major role in the analysis. The mean pressure is denoted by P in (5.33). The above

solutions have to be rescaled in the critical layer since they become singular at Y = Yc.

Although we have used the non-equilibrium critical-layer scaling given in §2, the results

in this section as well as in §3 and §4 are also valid in the viscous limit since the leading-order

viscosity effect was included by considering the viscous Stokes layer. In the viscous limit

where R defined in (2.8) is of O(a-r), see (8.8) of Lee (1997a), the critical layer becomes of

the quasi-equilibrium type and the viscous Stokes layer becomes thicker (Mankbadi et al.

1993; Wu 1993). The generalized scaling given in table 1 and (8.9) of Lee (1997a) indicates

that A, E2d, /53d, 8O2and _ in (2.8), (2.9) and (4.1) must be rescaled for the quasi-equilibrium

critical-layer analysis.

6. The critical layer

The nonlinear analysis of the detuned resonant-triads within the critical layer will be

presented in this section. The system of critical-layer equations and jump equations will be

derived here and their normalized version will be given in the following section.

The thickness of the non-equilibrium critical layer is of the same order as the growth

rate, i.e. O(a_+_), as shown by Goldstein et al. (1987), Goldstein & Lee (1992), Wundrow
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et al. (1994) and Lee (1997a). The growth rate and the linear convection terms become of

the same order of magnitude there. The appropriate transverse coordinate in this region is

= (Y - Yo)Ia" = (y - yo)lo,+l. (6.1)

The continuity and momentum equations expressed in terms of the scaled variables xl,

X, Z, zl, tl and ¢/, which were defined in (2.3), (3.5), (5.24) and (6.1), become

_x +_+_w_ +_r(u_l+4_wzl) =0, (6.2)

b{_,_,_}=-{_p_+_'p_,_-(_'+_)p_,_p_+_p_,}, (6.3)

where we have put

+_ o___+_+i _4 0Z 1 ] X6L' -- '

(6.4)

v = a'+2_. (6.5)

The viscous parameter A is defined by (2.8), the frequency-detuning factor X is introduced

by (2.6),)_ is given by (5.23) and u, v, w and p are total velocities and pressure. The

quantities (_, /_, _ and Yc represent those of the 0th resonant-triad, i.e. when 3 = 0, as

mentioned in the previous section.

Putting (2.9) and (6.1) into (5.30) to (5.33) and re-expanding the results show that the

critical-layer solution must be of the form

u - a_ = ar+lrw# + a2r+lu 0) + o'3r'l'lu(2) "_" o'4r't-lu(3) nt- o'5r+lu(4) + "'', (6.6)

J

= -a 2_+1 _ 2_r,_YcItei.4_/_c_ + a3_+1_ (2) -{-a4r+l_ (3) + aS_+l_ (4) +..., (6.7)
3=-J

W : O'2r+lw (1) + O'3r+lw (2) + o'4r+lw (3) Jr O'5r+lw(4) + ---, (6.8)
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J

p = P + a 3r+2 _ 2_v,,(cos 0)ReAj/_c_ 4- a4r+2p (2) + aSr+2p (3) +..., (6.9)
j=-J

where E_ is defined by (5.34), v,, is given by (3.15) and 8 is defined in (5.29). The solutions

in the inviscid Tollmien region (5.30) - (5.33) indicate that we must include the terms

a4r+1(In a)u (3L) and aS_+l(In a)u (4L) into (6.6) and similar terms for _, w and p into (6.7) -

(6.9). However, these logarithmic terms do not play any active role in the present analysis

and thus they are omitted for the simplicity. Substituting these expansions (6.6) - (6.9)

into (6.2) - (6.5) with (3.15) we can obtain the governing equations for u(1): _(0 w (t) and

p(0 which are given in Appendix A.

As in previous studies (Goldstein _ Lee 1992; Lee 1997a) we can solve these equations

(A 1) - (A 11) subject to the transverse boundary conditions that they match onto the outer

solutions (5.30) - (5.33). The relevant solutions for the lowest-order are given by

J

u (1) = u_}(f/,Xl) + _ Re2i(tan0)Q_l)(f/,xl)/_cj, (6.10)
3=-J

J

w(1) = Z R'e2(_l)(f/,Xl)'E'.7 , (6.11)
3=-J

where/_,_ and/_c_ are given by (5.34). From (5.30) and (6.6), we can show that the base

mean flow component u(_ ) becomes

u_ ) = a_)_/, (6.12)

where

= - + .... (6.13)

However, since the constant a_ ) is not required to be evaluated in the following analysis,

we will retain the general form (6.12) without substituting (6.13).
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The nonlinear equations in Appendix A indicate that more Fourier components must

be considered in this multi-frequency analysis than in the single-resonant-triad case. We

can show that u (2), u (3) and u (4) possess the following expansions:

• ) Eo;3 k 2,2;:u(2)= u(_)+ _-_Re ((U_2L_E1;s)iE1;:÷ U_2oL;_E2;2_)+ Z Re { Uo(_o),:£o;:? + (_(2)
:11 jI2

- (2) £ t

%,

J&l t:--I

- (3L)

+ (0_:2;:,,_0_-2t) t E2u + (U_:I_,,_I;:-') t E3;:+t} + Z ReElu [(U:3:;_lu) t + Z
:13 l:[2]

(81,311)3,t_1;./--2') t* _ (8l?ld;)./,f,m_l;-j+2f+2rn) t']" Z Vl,3;;_,',m_l;--/'i'2rn) _'-]- _'-'l,1;,,,,rn

m:--I m:l

t:[-2] ra:-I :13 t:[2]

- ' _ (o._;_.,.j._,_,,+,_)t .. (_1_)E3;.l[(V(3_:23,f'1;-:+2f) + Z ( ( V3(31_,,,m _1 ;./- 2m) 4" • t] -[- -,

and

0_.40a..)4'0;a-2' t E2;: _-_ Re [_:[_2]{ ( 0_:ob],,,u'4) -- u_)'{- Z ReO_4,oL;_E2;2:-{-Z Z Re ( , ;: ) +
:ll .f12f:l al3

Co;t) t E2;2,-t-F E (U_:o;):,On_'°;'-rn) t E2u+m} -t- X_ (o_:_,tS'o;,) t E2;,:+,] -I-ZReE2u
ra:l _:[--2] g[4

[_l'.2 (_m:l " -]- m:-l(U2'o;'hf'm'OD-2f-2m) }
-"_) ' (_,o_,,,Foo-,,+,4)+z((_,o:,,.,o;,-,.)-"') ' -"') '

+x:x:(o_:_,,,,_o_,-,_)t]+x:x:,,_,_,[(°_,_,,_o_,-,,)t+x:,,,,'"'( \"_ 2,0;:,f,m

l:-2 m:--I :[4 t:[31 m:[2]

- ((-(4/) f (fr(4m)Co;._,,+,_).+Z (o_.,._.o_o_,-,_-,o)t÷Z ._.o_,.,.jo;,-_o)+_.o_,.,._.o
n:--I n:l

{ -(4n) _ t (_r(4O) _ ,t)] ..., (6.16)£o;:-2m+2'_)t)} + Z (U2,o;:,O_ o;:-2,-2_) + Z _._2,o;,,,,,_,,_ o;,-2n) +
m:[--2] n:-I
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wherewe have put

Ea;3 - ei("x-Jt_)/2, Cb;t -- e i(bz+tz_ ),

(fr (_) C _t fr(k] C fr(k) _ for
"_,b;_[,t,,_,_] c;,/ -v_,b;:[,t,m,,q c;, + "_,-b;:[,t,m,,q -c;-,

(6.11)

= 2L,...,4o. (6.18)

It is easy to show that the previously defined/_,/_c3 and/_s_ by (5.34) are equal to E2;2_,

½E1;_(E1;_ + C-1;-3) and - ½iE1;3(C1;3 - C-1;-3), respectively. The summation notations used

in the above equations are defined as, for fi = 1,2, 3,...,

_3

= _ , (6.19)
3[a 3=-aJ

min( aJ,_J'l'{j,t,m} ) min[ aJ, J=_ {_,t} )

E - E , E - E (6.20)
{t,m,,_):±a (t,m,n)=max(-aJ,-aJ±(_,t,m}) {t,m}:[=t=a] {t,rn}=raax(--aJ,--J±{_,t))

The streamwise velocity expansions in (6.14) - (6.16) are basically composed of the

Fourier components U_kb};3[,t,,n,,qEa;,Cb;, where the integers a and b are coefficients of ½iX

and iZ as in (6.17) and z and l are expressed in terms of 3, i, m and n. All daggered terms

are composed of two components, for example, (_r_0};_,¢C0;__2t)?E2;3 in (6.14)is composed of

the two components U_20);_,eE2;_C0;_-2tand U_2_)0;_,tE2;_C0;__+2e. The shape function fr(2)v 2,--0;3,l

is different from fr(2) in general, although they will be shown to be the same in the present
v 2,0;3_t

case by (6.26). By putting J = O, or consequently 3 = g = m = n = 0, we can recover the

expansions for the single resonant-triad case given by Goldstein & Lee (1992), Wu (1992)

and Lee (1997a). The oblique-mode velocity jump across the critical layer can be obtained

from those of the nine Fourier components given in (6.15) with the subscript 1, 1; 3[,l, m]

and the superscripts 3L, 3a, ..., 3h. Meanwhile, we need to consider all sixteen components

in (6.16), denoted with the superscripts 4L, 4a,..., 4o, in order to obtain the velocity jump

of the plane wave.
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The solutionof the critical-layerequation for the /_2 eE0u£2;:+2 t component, given
, ;3,

in Part 2, shows that the nonlinear interaction within the critical layer produces a non-zero

jump of this component (Goldstein & Choi 1989). It is worth to note that this term is a

function of the slow time tl defined by (5.24). For the single-resonant-triad interaction, the

subscripts y and £ become zero and thus this component becomes steady as we expected

from the results of Goldstein & Choi (1989), Goldstein & Lee (1992, 1993) and Wu (1992).

By substituting (6.1) into the base mean-flow component in (5.30), or directly into

(3.13) to (3.16), re-expanding the result and comparing with (6.6), we can show that u_ )

and u(_ ) in (6.14) and (6.15) are given by

_(_) _ (2)+ + +...,

U(2_/.) _(3) _3 • (3) ,,_2 .(a) _'z= ¢_lMq -1- a2M'l -j" t=3MH 1 _ • • •

j2)= +1M " " ''

where

(6.21)

(6.22)

(6.23)

_(2)is nearlyequal to one halfof the doubleand /2cis given by (3.19). The constant t_IM

derivativeof the base mean flowat the criticallevely = aYe dividedby the scalingfactor

_(2) a(2) .(3) _13) and ¢,(3)a r-1. The other constants _2M, 3M, ¢'1M' ¢*2M "_3M can also be found although the

results were not presented since they do not play any major role in the analysis. The last

terms in (6.21) and (6.22) are functions of xl and they are included in order to match the

slight viscous correction that enters the external solution due to the slow viscous spreading

of the mean flow as in (3.13).

The expansions for the other velocities _(/¢) and w (k) and the pressure p(k) for k =2, 3

and 4 can be obtained if we replace/]_l_u[,t,m,n] in (6.14)to (6.16)by _(_;,[,t,rn,n]' 17V(al_;_[,t,m,n]
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and P_l_;:[,t,m,,_]and also replace the mean flow c°mp °nent _'_M(k)by VM_(k),w_) and p_),

respectively.The mean velocitycomponents 0_ )and • (k)•_M can be found by matching (6.7)

and (6.8)with the outer solutions(3.2)and (3.3)as

b l, o, (6.24)= = UlM q'F ..., = =

where b(_ ) and/_(3)V1M are constants. The transverse velocity components 0(_) and _(_) are non-

zero because of the viscous spreading of the mean flow as mentioned in §3. The nonlinearly-

T_1(0
generated Z-independent components of the spanwise velocity , ,, 2,o;:[,_,m,n]' are not zero

inside the critical layer although they _zfish on its edge.

If we substitute the expansions (6.10), (6.14) - (6.16) for u (k), (6.11) for w (1) and similar

expansions for 0(k), w(k) and p(k) along with the mean-flow components (6.12), (6.21), (6.22)

and (6.24) into the nonlinear equations in Appendix A and if we use the relation

min(bJ,_J:l:3)

a, : (6.25)
._]a rib .Tla+b l=max(-bJ,-aJ'l-3)

where the summation notation defined by (6.19) is used and _ and b are positive integers,

then we can obtain a system of partial differential critical-layer equations, which will be

shown in the following section, after considerable manipulation. The equations were given

in Goldstein & Lee (1992) and Lee (1997a) for the single-resonant-triad interaction. The

system of critical-layer equations can be solved analytically (Goldstein & Choi 1989; Gold-

stein _z Lee 1992, 1993; Wu 1992, 1995; Wu et al. 1993) or numerically (Lee 1997a) with

the transverse boundary conditions at f/= =[:oo that can be found from the matching with

the outer solutions (5.30) to (5.33).

The outer solutions (5.30) to (5.33) are obtained for the case when the oblique-mode

amplitudes with positive and negative propagation angles are the same. We can show from
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the critical-layerequationsandtheir boundaryconditionsthat

{0,_,w p_(k) = {r2,_,-w,-_(k)' Ja,b;:[,t,m,nl P_a,-b;:[,t,m,,]
(6.26)

for all daggered components, i.e. ()?, that appear in the expansions (6.14) to (6.16) and

{&v,w, ._(2) {O,_,_w,k_m-PJ0,2;j,t = J-o,2;//_ (6.27)

where the asterisk denotes the complex conjugate.

The solutions of the critical-layer equations have to match onto the discontinuous

O(_3dCY r) -- O(ff 4r+l) and 0(£2d at) _- O(o "St+l) terms in (5.30) and also O(_3dlT r+2) and

O(E2d at+2) terms in (5.31) for the oblique and two-dimensional modes, respectively. It

follows from (5.30), (5.31), (6.6) and (6.7) along with (6.1) and (6.5) that

J

oo fi(3)d#= _½i 6 u(3)d#= Z Re2/2c'Yc (¢+ - ¢_-) "_:J_c'+'''' (6.28)
oo oo 3=_j

J

= Z _Yo ($_+- $;)_,_,+---,
3m-J

where E1 and /_1 are defined in (5.34).

(6.29)

The phase jumps in (6.28) and (6.29) can be

eliminated by using (5.27) and (5.28) to show that

_oo_(_,d#:Oo ZJ Re_2Twc2 (cos0+c@s0)(A'I - i - - _,2 1/2
1=--,]

(6.30)

f _(2)dO= Z: _ _;- -_:x_+_ _5-_;j _1 _,1. (6.31)
oo 1=_01'

From the expansion for _(a) that is similar to (6.15) and the expansion (6.16) for u(4)

along with (6.26) we can show that

g+: (f/(ad)
J [f/-(3L) .-.(3a) . f/-(3b) fZ(3c) f/'(39) _1_ _ k" 1,1;/,t0-t_(3) = _ Re2/_cl /" 1,a;: + v1,1;o,1 + "1,1;1 + "a,a;l,o + "1,1;1,o T

I =-J L t=-J+l

+,-_(_o),-_(_f)_ _ - ] ..., (6.32)"1,1;3,_,3-]- "l,1;,,f,g--l} "t- 91(,_),t_,3 "t-

g.=-J-1
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3=-J f=-J+o

J-3 J+20

ff(4g) _ rT(4h) / fT(4j)
±fr(4_) frC4s) + v2,o;2:,t,j-_] + _ v2,o;2:,_,: + Zm _ 2,0;2;,t,j 3t- v2,0;2j,f,f-J _. v 2,0;2j,f,f-/

t=-J-j f=-J-I-2j

rain(J+:,J+t)

._ _-,(4n)
U2,0;2 j,£,3_ I "4-

m=max(- J + 3,- J +f)

f_4k) fr (40 + fr (4_)+
_ w 2,0;23,t,m,3-m v 2,0;2j,t,m,: v2,0;2:,t,m,m-:]

min(J-j,J-£) IT(40) )]
+ y_ v2,o;2:,t,,_,: +..., (6.33)

m=max(- J-3,- J-t)

where we have only shown the components of the base subharmonic and fundamental fre-

quencies. Substituting the above equations into (6.30) and (6.31) and by equating the

coefficients of Ec3 and E: for the oblique and plane waves, respectively, we obtain the jump

equations that will be given in the following section. They arise from the requirement that

the velocity jumps across the critical layer which are calculated from the internal critical-

layer solutions are equal to those calculated from the external solutions. The jump equations

must be solved with the system of critical-layer equations to determine the unknown insta-

bility wave amplitudes .4: and/}_.

7. The system of critical-layer equations and the jump equations

In this section we will present the system of partial differential critical-layer equations

along with the transverse boundary conditions and the jump equations. These final equa-

tions are normalized in such a way that their nonlinear growth parts are free from the mean

flow dependent parameters (Lee 1997a).

It is convenient to introduce the following normalized variables (Goldstein & Lee 1992;
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Lee 1997a)

(7.1)

1
_ 2A = =--

_3Tw6_3 ' K, Tw
(7.2)

and

2_Y_ (2) _Yc5_(2) (7.3)
'_IM -- _ aiM -- _"_-'_Pc,r_v_vC

where the positive real constant k is a normalization parameter which can be chosen arbi-

trarily, xo, rio and X0 are coordinate origin shifts to be chosen subsequently, xl, X, A and #

are defined by (2.3), (3.5), (2.8) and (6.1), vw is given by (3.15) or (3.16) and 2_ is given by

(5.23). The frequency-detuning factor X, introduced by (2.6), can be given as an input for

a problem. The mean flow coefficient ,,(2)•*IM was defined by (6.21) and (6.23). As in before

the subscript 0 has been omitted for the quantities of the 0th resonant-triad (3 = 0).

Following Lee (1997a) the dependent variables are normalized as, for -J _<3 _< J,

_ M ._ Q_I) (YcM)l/27) 1 (5(1) (7.4)A_ (YcM)I/2_)I;._A.7, Bz-_/)2;2_ _, - k2_sin 0 ;_j ,
_3_

where Aj and/_z are related to A_ and B_ in (3.1) to (3.4) by (5.26), _1)is the mode shape

of the leading-order solution given by (6.10) and (6.11), 8 defined in (5.29) is _r/3 at the

leading order and we have put

M =- 8ryc_2/(r_Stc-'3), (7.5)

T)a;j(£') - exp [½ia (Xo + %:_)- i3_] • (7.6)

- - - p (k)p_(k) of {U, V, W, }_,b;_[,O_,n] which areThe other normalized variables {U, V, W, Ja,b;3[,t,rn,_]

coefficients of the Fourier series given in (6.14) to (6.16) and similar ones for the transverse

and spanwise velocities and pressure, are defined in Appendix B for k = 2, 3 and 4.
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If weput
O - 02

the leading-order equation of the system of critical-layer equations becomes

(7.7)

£1Q_ 1) = As, (7.8)

which can be solved with the transverse boundary condition

Q_l)__o as y_±oo. (7.9)

The second-order equations are

/: ur(2) _½ A ,_(1)"0 v v 0,0;3 Z= _3+l_dl_ ,
t:--I

Uo2) w(2)
,0;J : -- "" 0,0;3'

Tx'r(2) --" F_ fl(1)* "" o,2;j,_ 2ff (_oW(o2_;3,_O"o,2;j,t (1)lj+twt , £oU(_);j,t,1 = 2iw(2) ),7

Vo(2) = o, (7.1o)
,O;j

v(2) = ow(2)
' "0,2;2,£_ "_"" 0,2;2,I_

(7.11)

1_?o_ As + vU_(x),-(2L):-,t, ,xr(2L) p(2L) /, ,XT(2M)Vl'l;3 kTT(2L) __ (, _{__"lWVl,1;S _ --_l,1;S -- _lrVl,1;J ' 2 )

12L) w(2L) - (sin 20)[Q_) -I-i(3:_ - l_o)Q_l)] + _is(sin 2o)_O_ ') -I-A s,,1;S : --''I,Iu

V2 2L) Bs, TT (2L) UT(2L),O;s : "2,0;3 = "'2,0;3 --0

(7.12)

,_2 S,t = ---"(--1)b-t_t , J"2v2,0;S,tr; S,! r/

1 ZAs-tQ_ln ), U(2) = W(2)
&l

and

pI(2L) D(2L) p(2)
,1;.m " 2,0;.m -" O, = O,= " c,,b;s[/],7

(7.13)

V2(2) = ')rT(2) (7.14)
,O;s,£_ "" " 2,0;S,t'

V,(2) = O, (7.15)
2,5;3

(7.16)

where the summation notation is defined in (6.20), w(2M) is given in Appendix C and"" 1,1;J

-(2L), -,
vL_;_(x)could be found, although the presentanalysisdoes not requirethat,by matching
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with the outer solution (3.2), (5.2), (5.31), (6.1), (6.5) and (6.7). The subscript 77denotes

the differentiation with respect to r/, i.e. 0/0_7, as usual, and the subscript {a, b} in (7.16)

denotes either {0,0}, {0,2}, {2,0} or {2,2}. We have also put

F(s)b= ½Aj_+idr(sin20)Q_ 1) for d=0,=kl,=k2,..., (7.17)

and

r -- e/(r_Yc), (7.18)

where r becomes unity at the leading-order if we use (3.20). Some of the simple equations

have been solved with appropriate transverse boundaxy conditions and we have also used,

in (7.11) and (7.15), the solutions of (7.16),

po(2) __ p.(2) = O.
,2;3,1 2,2;3

(7.19)

n(2L),-_
From (3.4), (3.11), (5.2), (5.33) and (6.9), we can find ri,1; _ ix), but it does not play any

major role in computing the amplitudes A s and B_.

The transverse boundary conditions axe

W1 2L) W (2) H(2) IT(2) -'+ 0 as 7/_ =kco. (7.20)
,1;3 ' a,b;3[,t]' v0,2;3,1_' v 2,0;3,lV

The solutions of (7.11) given in Part 2 show that Tr(2) t,, = co) - Tr(2) [._ --co) and"'0,2;3,gk'l '_ 0,2;3,_\'1 -"

= co)- : -o0)axenon-zero,therefo,e,

Uo(2) _(2)+oo v(2) 9(2)+oo,2;_,t --_ '_0,2;_,_ , "o,2;_,_--+ "0,2J as _}--* q-co, (7.21)

7)(2)+oo and f;(2)±_where "0,2;_,t -0,2;_,t are functions of _.

The velocity jump across the critical layer for the oblique mode will be obtained by

solving the following third-order equations

/: ,xr(3L)_ _p(3L) ,- ,x,(3M) ,. ,_.(3L) = 2i_/A_, (7.22)
1 VVl,1; 3 -- " 1,1;3 -- z"1vv1,1;3 _ _'lVl,1;Y_
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[* 1,1;j,t'

t:[-2]

_ lXr(3c) p(3c) • (2)
1,, 1,1;:,t= -" 1,1;_,t- IFo)l:-tW?),o;_,

/_ lxz(3d) G(21o,1:1,1,1)
l *V l,1;3,t,ra = -P_3,1d;_,t,ra + 0-0[0,2;t,m'

1r(3c) • (2)
1vl,1;34nn = ]A2-tU_,o;¢_ n,

/ZTr(3d) If2(211'1:2'2'0) 1

lVl,lu,t,mnn = ['_(:-t)lO,2;t,raJ_'

(7.23)

Vl(3b)
,1;3 = O,

(7.24)

(7.25)

(7.26)

/_ Txr(3e) p(3e) j.___(2I0,1:-1,- 1,-3) r _z(3e) [&(21x,-z:2,0,-2)] (7.27)
1w1,1;j,f,m _--- --_ 1,1;3,t,mTV(--j+t)12,0;l,m ' _"lVl,1;3,f,mn_ = -- ['_(-:+t)12,0;t,mJ_,

/_ Txr(3]) p(3f) t_(210,1:1,-1,3)
1 rr 1,1;:,t,m = --_ 1,1;3,t,m -- "(-:+t)12,0;t,m'

E.. W (3"0) p(3g) _ iF(1)l,+tW(oy2;;,L 1,1;3,/ = --_ 1,1;3,£

_"I W_?:),e,m o(3h) G(21°'1:-1'-1'1)*= --'* 1,1;3,t,m Jr (3+t)10,2;£, m ,

(7.28)L w-(3I) [t_(211,1:2,0,2) ]
lVl,1;:,/,mrFt = -- L (-:+t)12,o;t,mJn'

_ T,_(39) • (2)*
1 v 1,1 ;:,tn_ = IAj+t U_,o;tnn , (7.29)

£ Tr(3h) [_(21a,-_:2,-2,o)*]
l Vl,1;J,t,mnn = - [" O+t)lO,2;t,m in'

(7.30)

with

U(k) _ V(k) _ l/V(k) _)(k)1,1u[,t,m] - 1,1u[,t,m]n 1,1u[,t,m] Jr '"l,1;3[,t,m] for k = 3L,3a,...,3h, (7.31)

and

)1(k) . (7.32),a_[,t,,,qn = 0 for k = 3L,3a, ..,3h,

.o(k) _,(3L)
where '_'l,lo[,t,m] in (7.31) is equal to zero if k i_ 3L and "q,lu is given in Appendix C along

with w(aM) in (7.22), We have put, in addition to (5.29), (6.20), (7.3), (7.17) and (7.18),
"" 1,1;:

that

{G, ="l(kldl'd2:da'd"d') i [d U (k) d W (k) _ (As, A;)G_O)]a,b;t[,m,n ] -- 2 k 1 a,b;t[,m,n] Jr 2 a,b;t[,m,n]) n

d W -V (7.33)_, 4 _,_;t[,m,.] + s .,_;t[,m,.] _,_;t[,m,_]on /
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realconstants.The pressureP_k?;.7[,t,,_](_) for k = 3L, 3a,..., 3h couldwhere dl to d5 are

be found by matching with the outer solution, but it is unnecessary in this analysis.

The above partial differential equations can be solved subject to the transverse bound-

ary conditions

(I/IT(3L) IM(3M)'_ H7 (k) Y_ (3L) V. (k) --+ 0 as T/---* +cx_, (7.34)
"" 1,1;.7 Jr- ,, 1,1;3 )' 1,1;.7[,g,m]' 1,1;.7_77' 1,1;.7[,_,m]_

for k = 3a, 3b, ..., 3h.

The other third-order equations that must be solved in order to compute the velocity

jump of the plane wave across the critical layer are

V2(3L) ( 1 ) -(3L),-, I_T(3L),0;.7 = 2 rl + _17o B_ + V2,o;.Ttz ), ""2,0;3 = 0,

_ rr(3) = T_(3) V(3) = 9TT(3) __ y(3)
2 tz 2,0;3,l_ / ' _2,0;.7,l' " 2,0;3,1_ "v 2,0;3,t 2,0;3,t'

U2 3L) = B3, (7.35),0;3

W,(3) _,(3) (7.36)
2 2,0;3,/ = "2,0;3,t'

fw(3a) ]/-(3a) _ fp(3a) O) -_ (COS 2 a_xr(2L) f 0 _2 D___2_/,3(1) (7.37)J_3 L'" 3,1;3,t' "3,1;3,t_J = -- _." 3,1;3,l' uJV2,0",l _.'_' Or/ J "q_(3-1)'

f.. ,XT(3b) p(3b, • (2) _ lrr(3b) [ W_2) ] , (7.38)3vv3,1;3,l = --" 3,1;.7,f -_" 1F(-l)l:-tW2,2;1, _,3v3,1;3,t_/_= -2i F(_4)[.7_ t ;t

L ,xz(3c) p(3c) _(210,1:-1,1,-1)
3vv3,1;.7,t,m = --" 3,1;.7,t,rn 3L "-"(:--t)12,0;l,m '

/: 3 W3( ,31d;_,l,m p(3d) __(210,1:1,1,1)• = --" 3,1;3,t,m -- _"(.7--f)[2,0;f,m _

U3k) (v-(k) W(k),z;.7,1[,_]= ½ _,"a,z;.7,_[,m],_ 3,1;j,_[,m])

with

p2(3L) _-- p,(3) = O, p,(k) = 0
,O;.rr/ 2,0;.7,er/ 3,1;:,t[,m]n

£3 V(,_:_,l,,nn" [_(2.3,1:2,4,2) ] (7.39)= [_O-t)12,o;t,mJ n'

tz(ad) [G (213'-1:2'4'-2)] (7.40)
3v3,t;3,_,m,Tn-'[ 0-t)12,0;t,m J n'

for k = 3a, 3b, 3c, 3d, (7.41)

for k = 3a, 3b, 3c, 3d, (7.42)

and
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wherewehaveused (5.29), (7.17) and (7.33), 7(3) ._(3) and _(3) in (7.36) are given
_2,0;3,t' ' '_2,0;3,t °" 2,0;3,t

_(3L), -,
in Appendix C and V2,o;flx)can be found from (3.2),(5.2),(5.31),(6.1),(6.5)and (6.7)

although we do not need to obtainit.

The transverse boundary conditions are

W2(3) r,,'(3) W (k) V.(k) :i:c¢,
,O;3,t' v2,0;3dn' 3,1;3,t[,m]' 3,1;3,t[,m]_? "+ 0 a8 T] ---+

(7.43)

for k = 3a, 3b, 3c and 3d.

Finally, the velocity jump across the critical layer for the two-dimensional instability

wave can be found by solving the following fourth-order equations:

rr(45) = 4i_/B_, (7.44)2 _J2,0;_

J_ Tr(4d) "- |v(2L) T/(2)* (7.45)
2 t.'2,0;$,tr/ •. 2,0;3+lv O,O;tr/r/,

, E(2) o2 _ (rr(2) TT(2)"2,o;t,,.Y_, ) _,'_o,o;3-t + vo,o;(-:+O),

_ rr(4a) ='T_(4a) r rr(4b) _ ;W(2L) IT(2)
2 tJ 2,0_,tr/ '_'2,0;3,D -¢-'2 cJ 2,0;j,t_ ,, 2,0;3_tv O,O;t_,

e ,T(4,) = £-U (4/) = -it(tan 2 O) (rr(2)
\v 2,0;l,m'q --¢.'2 tJ 2,0.j,t,mr; _ 2,0;3,/,m_

_.'*0,2;g,m "" 2,2;3--t' --'=*0,2;f,m W'2,2;3+tj' '

L: .(4o = (seJe) rnc3bll,O: ,3,- )]2_2,o_,t,_ t'-"O-OIz,1;t i

(7.46)

(7.47)

,- ,r(4}) = (sec 2 0) r_-(3dlL°:1'3'-1)] , (7.48)
,, "2 _'2,0;3,t,-,,,_ ['O-OIl,1;t,m,'fl,

f_rT(4c/4j) -- (sec 2 _) [(.2(3a13c11,0:1,3,-1) (_,_(3=13b]1,0:1,1,-1)]
2_2,0;J,t,mn L'_ O-OIl,1;t, m -- "_ (-3+t)13,1;t,m ] r_'

J_ rr(4l/4m) -- (sec 2 0) [/'2(3e/3fll'0:1'3'-1) Ir-2(3c/3d11'0:1'1'-1)]
2t)2,0;3,t,m,nrl L"_(3-O[ 1,1d,m'n -- v(-3+t)13'l;t'm'n Jn '

f rT(4n) Tr (4°) _ (sec 2 0)_ ff2(3gll'0:l'3'-l) _(3h11,0:1,3,-1)'[£2 L,_u,o;o,l,,_n, v2,o;s,_,_,n,_j = /'-'(s-t)ll,z;t,,_ ' vo-OIl,1;Lm,nJ '

(7.49)

(7.50)

(7.51)

E(_) = oft(k) _(k)2,0;._[,t,m,n]v_ =_2,0;j[,t,m,n]_ + d2,0;_[,t,m,n] for k = 4L, 4a,..., 40, (7.52)

and

4O



qo(4a) n;(4a) _(k)
where'"2,0;:,tin (7.45)and-'2,0;:,ein (7.52)aregivenin AppendixC andJ2,0;;I,e,m,.] = 0 if

k _ 4a. We have put

H(kldl,d2) _(sin 2 0) [_ rr(k) d W (k) .cz(k) 0 _ (7.53)a,b;f,m "_ --U,l%_,b;_,,,, + 2 ,_,b;l,m "_,,b;t,,'r,_/

rr(4c) andand we have also used (5.29), (7.3), (7.18) and (7.33). The equations for v2,o;3,e,mn

U2(4.0,ov,e,,n,7 are obtained from (7.49) by choosing the superscripts {3a, 3a} and {3c, 3b}, re-

/'r(41) and {3f, 3d} arespectively, and similarly the superscripts {3e, 3c} axe used for v2,o;_,e,m,,n

rr(4m) in (7.50).for v 2,0;3,l,m,nrl

The solutions of the above fourth-order equations must satisfy the following transverse

boundary conditions:

U2k) (7.54),o;_[,e,=,,,dn _ 0 as r/--* +_,

for k = 4L, 4a, ..., 40.

The above system of partial differential equations must be solved with the jump equa-

tions in order to obtain the streamwise evolution of A_ and B_. The jump equation for the

oblique mode becomes from (6.30) and (6.32)

(cos8+ co--_)[A,_-t-½(3X-_?o)A:]- ¼_(sec2O)(2a_kvwA)l/2Aj

• V [v(3L) Iz(3a) ,[/- (3b) i/(3c) ll(3.q)= - (see 2 0) d_7 L"1,1;.p/_7 "_- " 1,1;0,yr1_7 "_ " 1,1;7rP7 "3U "1,1;:,onn + "1,1;_,onn
oo

J _z(3.) (31) v(3h) '_]

+,=_,E(V_t1_J,,-,,,,,7+ "l,,',:,,+,,_, + V;,,;,,,+',',,_ + ",';,,'-,,_,TlJ '

and the plane-wave jump equation becomes from (6.31) and (6.33)

(7.55)

[lyr(4L) TT (4a) TT(4b)
- ___B_ + i 02 - '7°)B_ - ½_(a_r_i) _/2B, i J- d_ [2_2,0;,. + _2,o;2,,,. + v2,0;,,0.

71"T oo

J+3

k rr(4d) rr( 4i) (rr(4c) rr(4e) rr(4f) /-r(4a)V"+ + + + +
'-"2,0;.],On " 2,0;2.h.rr/ _ _.'-" 2,0;.7,e,yr_ "" 2,0;22,f,yr/ v 2,0;23,t,(f--3)r/ v 2,0;2.7,f,(.7- f) r//

£=-J+3
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+

J-j

/'T(4h)
+ _ v2,o;2:,t,_ +

t=-J-3

min(J+3,J+t)

m-_rnax(- J-b j,- J + £)

J+23

x-" +
1,v 2,o;2:,t,(t-:)n '_2,o;2_,_,(:-t),7

t=-J+2/

((4k) u (40 + u (4m)_,U2,0;2:,_,m,O_,O_ + v2,0;2:,_,m,_ v2,0;2j,t,m,(m-:)_J

_ "2,0;23,t,m,_

m=max(-J-3,-J-£)

where (5.23), (5.29), (7.1), (7.2), (7.4), (B3) and (B6) have been used along with

-_-_/(r_), (7.57)

and _ (also in (C 11)) becomes unity, at the leading order, if we use (2.5), (5.8) and (5.9). The

terms involving i3:_ on the left hand sides of (7.55) and (7.56) account for the wavenumber

difference between the 3th and 0th resonant-triads (see (5.21)) which is caused by the

frequency detuning introduced in (2.6). In this analysis, it is convenient to choose the

transverse coordinate origin shift 7o introduced by (7.1) to be zero

7°=0. (7.58)

The upstream flow can start out as a system of resonant-triads of linear instability waves

(Goldstein & Lee 1992; Lee 1997a), as a system of resonant-triads of linear and nonlinear

instability waves (Wundrow et al. 1994; Goldstein 1994; Lee 1997a) or as a system of pairs

of nonlinear oblique modes (Wu et al.

linear instability-wave case becomes

A: _ a:exp [(hob - }?)_)x] , B: _ b:exp [(_2d -iJ_)_]

1997). The upstream boundary condition in the

as (7.59)

where

g: - -==-_
Ml (o°)l exp (½3k;_Xo), b:-_oo}exp(ijk_Xo),

(7.60)

42



9_and M are given by (7.2) and (7.5) and we have used (5.23). The _0) and B} °) are the

complex initial values of the oblique and plane wave amplitudes Aj and 1}3 in (3.1) to (3.4),

/}_ _., /_o)exp (½krw&_2dz 0 as zl _ -oo. (7.61)2_ 3 --4 .Z_ O) exp (l_Tw_t%b;T1),

The origin shifts zo and X0 in (7.1) are chosen to satisfy

(M/k4)B(o°)eiX°+an2nz° - 1. (7.62)

The upstream matching conditions for a system of resonant-triads in the later stage of

the critical-layer evolution can be obtained from the solutions of the preceding linear or

nonlinear stages as in Wundrow et al. (1994), Goldstein (1994), Wu et al. (1997) and Lee

(1997a).

The linear growth rates of the oblique and plane waves, nob and _2d, can be obtained

from (7.55) and (7.56),

sec0 i ], (7.63)_ob = 4(1 + cos 2 0) lrrA_ co arlvx'l;_nn + _ (2a_rwA)l/2

i foo A_[7(4L) _t_ I (arkrw_)l/2 (7.64)
n2d -- 2r_-B_J-oo_"v2'°;_ni _

The lastterms in both equationsare due to the viscousStokes-layereffectand thiseffect

enhances the lineargrowth ratesofthe instabilitywaves.Their magnitudes are ofO(ar/2),

but they willbecome O(I) in the viscouslimitwhere ,_= O(a-r).

Itiseasy to solve(7.22)and (7.44)to show that,as in Part 2,

: 2iTra_tA, ' f/,ar/U2,o;_,,(4L) = 2ira_tBs, (7.65)co ar] Vi'l;'mn

r'(2) (thatwhere _(2) is given by (7.3). As mentioned earlier, see (6.21), (6.23) and (7.3), t_lMt*lM

is composed of two parts) is proportional to the double derivative of the base mean flow at
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the critical level. The first term on the right hand side of (3.19) is due to the mean pressure

gradient and the adverse pressure gradient (positive value of/_) increases the linear growth

rate, while the second term, which is always negative, is due to the Blasius profile. In the

later non-equilibrium critical-layer stage the exponent r of the growth-rate parameter _T is

smaller than 3 and also _ _ 1 as shown by Wundrow et al. (1994), Goldstein (1994), Wu

et al. (1997) and Lee (1997a). Thus, from (3.19), the linear growth rates given by (7.63)

and (7.64) become negligibly small compared to the nonlinear growth rates.

8. Concluding remarks

The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-

triads is presented. It is shown that resonant-triads can interact nonlinearly between them-

selves in the common critical layer if the scaled Strouhal numbers (of their fundamental

plane waves) are different by the magnitude of the growth-rate parameter, O(ar). The flow

outside the critical layer is still governed by the linear dynamics. The generalized scaling

of Lee (1997a) has been used for the long-wavelength small-growth-rate instability modes

in boundary layers with and without mean pressure gradient. The wavenumber parameter

characterizes the small wavenumber and the growth-rate parameter a r characterizes the

ratio of the small growth rate to the wavenumber of the instability wave. Although the anal-

ysis was carried out with the non-equilibrium critical-layer scaling, the quasi-equilibrium

amplitude equations can be obtained in Part 2 by taking the viscous limit of the finite-

viscosity amplitude equations. It was shown by Goldstein (1994), Wu et al. (1997) and Lee

(1997a) that the later downstream stage of the quasi-equilibrium critical-layer evolution is

governed by the non-equilibrium dynamics. In fact, the final critical-layer stage will be
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governedby the inviscidversionof the systemof equationspresentedin §7 without the

linear growth terms. Since the value of r becomes nearly equal to zero there, the viscous

effect and the linear growth rate will become negligibly small (Wundrow et al. 1994).

The effect of the viscous Stokes layer has been included so that the linear growth rates

are valid for both in the finite-viscosity and viscous-limit cases. The upstream instability

waves can be composed of either linear instability waves or nonlinear waves of the preceding

critical-layer stage.

The nonlinear effect in the critical layer produces a term which is periodic in the span-

wise direction with the spanwise wavenumber equal to twice of that of the oblique modes.

In contrast to the previous results (Goldstein & Choi 1989; Goldstein & Lee 1992, 1993; Wu

1992, 1993; Leib & Lee 1995), this term becomes unsteady in the present multi-frequency-

interaction case. The magnitude of this noulinearly generated low-frequency mode is as

large as that of the primary oblique modes outside the critical layer. The complete so-

lutions of the spanwise-periodic components, as details will be given in Part 2, can be

obtained from the multi-layer analysis as in Wu (1993). When r = 3 and A defined by

(2.8) is O(1), we need to consider the solutions in the potential region where y = p/a,

the main boundary layer where y = O(1) and the viscous wall layer where y = a3l F in

addition to the inviscid wall layer of O(a) and the critical layer of O(a4). The viscous wall

layer, which is thicker than the viscous Stokes layer in §4, is required in order to satisfy the

wall boundary conditions. (The inviscid-wall-layer solutions of the streamwise and spanwise

components become singular at the wall.) The three-dimensional boundary-layer equations

in the viscous wall layer must be solved with the no-slip boundary conditions at the wall and

appropriate boundary conditions on the upper edge of the layer in order to match with the
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solutionsin the inviscid wall layer. The transverse velocity on the upper edge of the viscous

wall layer is determined internally by the boundary-layer equations themselves and it can

not be given as a boundary condition as in Wu (1993). It is interesting to find out that the

velocity components in the inviscid wall layer, at the leading order, become equal to zero

where Y > Yc but non-zero where Y < Yc (Lee 1997c). Thus, the nonlinear interaction

between oblique modes produces, at the leading order, the spanwise-periodic velocities only

below the critical layer. The non-zero velocities at Y - Yc- will be determined from the

matching with the critical-layer jumps.

Since the velocity jumps of these low-frequency modes across the critical layer are

determined from the solutions of the amplitude equations, which become singular at a finite

downstream position, the magnitude of the spanwise-periodic velocities also becomes very

large near the singular point. When r becomes 9/10 the streamwise velocity becomes as big

as the base mean flow, therefore, the nonlinearly generated spanwise-periodic component

and the base mean flow start to interact nonlinearly in the viscous wall layer whose thickness

is of O(a 37/10) (Part 2; Lee 1997c). This nonlinear viscous wall layer will be separated into

two layers (inviscid nonlinear layer and the viscous nonlinear layer) in the later downstream

region.

When the difference between the scaled Strouhal numbers, $_ given by (2.5), of the

resonant-triads is larger than the magnitude of the growth-rate parameter a _, the instability

waves of an individual resonant-triad initially grow independently of the instability modes

of the other resonant-triads. For example, when r = 3 in the adverse-pressure-gradient

boundary layer (Goldstein & Lee 1992), the plane and oblique waves of the resonant-triad I

(and those of the resonant-triad II) go through the usual linear stage, parametric-resonance
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stageand the fully coupled stage, independently of the other resonant-triad, as shown in

figure 2, provided the (fundamental) frequency of the resonant-triad II is larger than that

of the resonant-triad I by O(aP+2), where p is a positive number that is smaller than 3.

Since the distance between the critical levels, YclI- Ycl, which is of O(aP+l), is larger than

the critical-layer thickness of O(a4), the growth of each resonant-triad is not affected by

the presence of the other resonant-triad. The streamwise evolution of the oblique and plane

waves are still determined by the integro-differential amplitude equations (5.50) and (5.51)

of Goldstein & Lee (1992), or by the O(1)-viscosity equations given by Wu (1995) and Lee

(1997a).

The non-equilibrium critical layer becomes thicker and r becomes smaller as the insta-

bility waves propagate downstream (Goldstein & Lee 1992; Wundrow et al. 1994; Goldstein

1994; Wu et al. 1997; Lee 1997a) mainly due to the self-interaction between oblique modes.

The instability modes of different resonant-triads start to interact nonlinearly within their

overlapped critical layers when r becomes equal to p. The oblique and plane waves of both

resonant-triads I and II in figure 2 become fully coupled in the frequency-detuned nonlinear-

interaction stage where their growth rates are now O(aP+l), or r = p(< 3), which is the

initial difference between the respective critical levels. The amplitudes are then determined

by the inviscid version of the system of equations presented in §7. When r approaches to

zero the critical layer becomes almost as thick as the inviscid wall layer whose thickness is

of O(a_ and, thus, a wide range of instability waves with the scaled frequencies differing

by almost O(1) can now nonlinearly interact between themselves. This non-equilibrium

critical-layer stage is still governed by the parabolic type equations of this paper, but the

flow in the next stage will be governed by fully elliptic triple-deck equations (Goldstein gz
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Lee1992,1993; Wu et al. 1997). The turbulent flow field may be determined by solving

these elliptic equations with the upstream matching boundary conditions that can be ob-

tained from the solutions of the equations presented in §7 (with appropriate downstream

boundary conditions).

The system of critical-layer equations are presented in §7. The variables are normalized

(Lee 1997a) in such a way that the mean-flow-dependent parameters, i.e. _lM_(2)and vw, only

appear in the linear growth rate terms in (7.63) and (7.64) or in (7.22), (7.44), (7.55) and

(7.56). We can show that a_ ), a(_), a(2)aMand b_) in (C1), (C2), (C4), (C5) and (C7)

do not play any major role in computing the velocity jump across the critical layer and

they will not appear in the final amplitude equations (Goldstein & Lee 1992; Lee 1997a).

The nonlinear part of the system of critical-layer equations is free from any mean-flow-

dependent parameters except _. Therefore, the results of this frequency-detuned analysis

can be universally applied to other shear flows, with minor modifications for the specific

linear growth rates, which have been individually studied for the single resonant-triad or

single-frequency oblique modes, for example, oscillatory Stokes flows by Wu (1992, 1995) and

Wu et al. (1993), free shear layers by Goldstein & Choi (1989) and Mallier & Maslowe (1994)

and supersonic boundary layers by Leib _ Lee (1995). The magnitude of the wavenumber

of the instability wave in these analyses is of order one and thus the near-neutral small-

growth-rate approximation that was originally introduced by Goldstein & Leib (1988) and

Goldstein & Hultgren (1988) has to be used instead of the long-wavelength small-growth-

rate approximation used in this analysis. The nonlinear part of the system of critical-layer

equations is also valid for any values of 0 (for the oblique-mode interactions) since the

resonance relation (5.15) or (5.16) has not been used in it.
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The frequencies of the fundamental plane waves of the frequency-detuned resonant-

triads can be freely specified (or can be given by experiments). The small parameter a,

which accounts for the small wavenumber of the instability waves in boundary-layer flows,

can be chosen from the adverse-pressure-gradient boundaxy-layer scaling (Goldstein et al.

1987; Goldstein & Lee 1992; Wundrow et aI. 1994), the upper-branch scaling (Mankbadi

et al. 1993; Goldstein 1994; Wu et al. 1997), or the favorable-pressure-gradient boundaxy-

layer scaling (Wu 1993). The scaled Strouhal number _j and the frequency-detuning factor

X are then computed from (2.5) and (2.6). The wavenumber of the plane wave &_ that

possess the series expansion (5.8) is fully determined by the dispersion relations (5.9) to

(5.13) and the phase speed _ can be obtained from (2.5). The wavenumbers _ and _j

of the oblique modes axe computed from (5.15), (5.16) and (5.18). In order to obtain the

strea.mwise evolution of the (complex) oblique and plane wave amplitudes A s and B_ of

the full system of resonant-triads, the system of partial differential critical-layer equations

in §7 must be solved with the jump equations (7.55) and (7.56) along with the upstream

conditions (7.59). However, we only need to solve (7.8) - (7.16), (7.20), (7.22) - (7.32) and

(7.34) with (7.55) and (7.59) for the nonlinear interaction between the frequency-detuned

pairs of oblique modes.

The system of partial differential critical-layer equations can be solved both analytically

(Goldstein & Choi 1989; Goldstein & Lee 1992, 1993; Wu 1992, 1995; Wu et al. 1993) and

numerically (Lee 1997a). It may be more convenient to solve them numerically for the

finite-viscosity resonant-triad case. But it is relatively simple to solve them analytically

when only the pairs of oblique modes are considered. The resulting analytical amplitude

equations, as will be given in Part 2, are quite compact and can be easily solved numerically.
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Comparisonwith theanalyses of Goldstein & Lee (1992) and Lee (1997a) shows that the

previously considered single-resonant-triad is a special case of the present multi-resonant-

triads. The perfectly tuned case of Goldstein & Lee (1992) and Lee (1997a), when Ri in (8.3)

of Lee (1997a) is equal to zero, corresponds to the interaction of a single 0th resonant-triad,

i.e. between the 0th plane wave and the pair of 0th oblique modes.

The system of partial differential critical-layer equations in §7 will be solved analytically

and the amplitude equations (without the back-reaction term in the plane-wave amplitude

equation) and their viscous limit will be presented in Part 2 (Lee 1998b) along with the

numerical solutions. The low-frequency spanwise-periodic components that are induced by

the nonlinear effects in the critical layer will also be considered in Part 2.

This work was supported by the Acoustics Branch at NASA Lewis Research Center,

contract number NAS3-98022.

Appendix A. Governing equations for u (/), _(0, w(0 and p(0

_(_)+_w(?=0,

_(_)+_,_,.(_-,)+_,(-_)+_w(2)+4_(_-') - o for
J

Lu (1) = _ Re2ir,_'(sin 2 0)fi,_Ecj,
y=-J

J

Lw (1) = __, Rev_5_(sin 8)A_J_j,
3=-J

k = 2,3 and 4,

J

Lu(2)= u(_ E Re2irwYc_A_/_cj + rw (_w(_)- _?u(_l + 4"_:_w!_ ))
3=-J

- (_uO)u(_) + Z-w(1)u_)'_./,,
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Lw (2) =

J

3=-J

) - (A6)

Lu (3) u(_ _ Re2ir_Yc_A;/_c_ + rw (/_w(_)- r/u(_l) + 4:_Xa r_ w(2) (w(1)u(11)) _]
: L to Zl

3=-J

J

Lw(3) = w(2) E Re2irwYc'_.4,J_c_ -/3p?) - 4"_)_ (P!21) q" W(1)W(1)_Zl ] -- _w't_w(2)xl

3=-J

(A8)

J

Lu(4) = u(3_) E Re2irwycx/a_ _'e_ + rw (_w(_) - f}U(_l)
3=-J

[ w zl k zl zl /_j

+a (u(_)u(3)+ ½u(2)u(2))x

+ u(_)o(3)+ u(n2)_(2)

(A9)

and

p(k)=O for k=2and3, (A10)

where we have put

( O_xl Xa'_l-O ) r,_5_l-_-_O 02L - _ + + - A_--_, (A ii)

Ec: and/_s: are defined by (5.34), 2 and X are related by (5.23) and 0 is defined in (5.29).

We have also used (3.8) and (3.20).

Appendix B. Variables in the normalized critical-layer equations in §7

.(2L) (YcM) 112 COS 0__ -(2L) .(2L) _M _) r.(2L)
: -- .-_-- 2;23(/2,0;3,"/1,1 ;3 k3rw _ 131;:q1,1;2, U2,0;: 2k rwYc

(B I)
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(2) ,.(2) ,.(2) ,f12) _ M f_ -(2) D =(2) D :(_) D -(2) _ (B2)
qO,O;3 _0,2;3,f _2,0;3,t _2,2;3J- _3tan 2 0 _ 0;3_0,0;3, 0;3_/0,2;3,f, 2;3_2,0;3,t_ 2;3ff2,2;3f,

(3a) (k) l _M 3/2cosO f_ -(3,,) _ -(k) 1 for k = 3L,3b, 3h,
ql,1;j,t' ql,1;j[,f,m]J -- }¢4y1/2 tan2 O _.Ul;_+tql,1;_,t, Ul;J_l,1;3[,£,ra]J "'"

(B3)

q(3L) M :P =(3L) q(3) M cos 2 8_ =(3) (B 4)
2,0;3 -- _4Tw2;23(/2,0;0 _ 2,0;3,f ---- /)2;3L/2,0U,! _

)'.(3.) q(ab,3_,3d)_ _M 3/2 cos # f¢, -(3.) _. -(3b,3_,3d)l= _.u3;3+tq3,,;_,t, r'3;3q3,1;3,t[,rnl], (B 5)
/u3,a;_,t, 3,x;_,t[,,_lJ k4Y_/2 tan 2 8

(4L) (4b) ..(4c) (4a) q(k) 1. 2_rSM

_) :(4c) _:) __.(4d) 7)- ,;(k) "( for k = 4a, 4e, 40,
2;3+mq2,0;3,t,m, 2;23-Fg_/2,0;3,f, z;Y_2,0;3,t[,m,n] J "..,

(B6)

where M and :DG;_(_) are given in (7.5) and (7.6) and 8 is defined by (5.29). The normal-

r (_) _(k) _ for k 2L, 2, 4o denotes either {U, U},ization pair {q,_} of _tqG,b;_[,t,m,n]' _,b;3[,t,m,n]J = "" "

{V, 2iV/(ka_.)}, {W, l_ tan O} or {P, i/5(tan 20)/(krw_.)}.

Appendix C. W(_ M) in (7.12); Ixz(3M)in (7.22); °(3L) in (7.31); 7(3) 0(3)• " 1,1;3 '_'1,1;3 _2,0;3,t_ '"2,0;3,f

and 3)(3) in (7.36); 0(4=) in (7.45); v(4a) in (7.52)
,f 2,0;3,f '"2,0;3,t "_"2,0;3,t

,1;3 = g_ Jr , (c

Wx'aM' = 2i_r_ (_)(_J:1,1)_),2)+ 3g$)[IKI"2L) JgtgsQ_ 1,] + i_g. [(:_)(_:1'1))2 ((,x;, k = " L'" _,a;._+ _:p(_)Q_X)),

+li_ (4 -_- _)(2,) "_3_/r/"J_)(1)"_ _ Z1.M_._"'_(1)'D(3:1'0)_)(2'C)(1'],"_3 J + irg. L["(2)2M7)(_," +'aM_(2)(_Oa. _o_-_)io. '_

2_(a2/s)] a_
i_, _-)o' ± _,2) {/fD(2)+ i_ (1 + _z}] Q_), (c2)

_(3L) = 2a'i_ (T)(3:l'0)[7(2L) ,_).(2L)_La;z \_'e vl,a;3 + 3gt"a,1;3J, (c3)
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Z [3) =,,oj i(._- 2_)g,_.P_L,,- c (_'l°'H'°'°)
(3-g)Jl,1;_

[,_0:2,2)w(2) ZQ(X) (T:(2L) _, .,-,(_:l,O).-,(l)_l--g_ L',_ "' 2,o;j,e + 2 a-e \'l,X;tn - zgsue ¢4e )] , (C 4)

[['2(2LI1,0:1,0,-4)] . ,_'D(3:2,2)0(2)_(')..-_,o;,,,=0- u)g,g.w_(_o)_,,_+ t'-'(.,)l_,l;, j. - -_., • _,o_,,_

+_9_ tl _" 1,1;tn - 2g_

y2(3) rz_o:2,o)rr(2)
,o;;,e = -ig. t :_ "2,o;;,e + (3- 2t)g,W(2);j,e] , (C6)

7_(4a) -2_'_ge [_){_0).. _0:2,o),q(2) D(;:2,2)_(3) 'l {a(1),. W(2)2,o;_,e = V*M _s.-'_ '¢2,o;_,e + • "_2,o;j,q - (3 - 2g)gt \ M _, 2,o;j,e

a(2)._ a(2). i_(2) O_rr(2) _a( 2) Tr(2) 1a.W(a) _I [(ai__)2+ + - 1M'2,o;:,,J-- 2,o;o,t)J -- Tgn 2Mq 3Ma" 2VM _'_v) "2,o;3,en

[G(_Lla,on,z,-a)]
"J-'e [ {3-g)[l,a;g j ff--_¢gn [_ { (_Z_ J:2,O) "J-gt') "a,a;,r_{2L)"+ va,a;t"(2L)00.

-(,- } - °-,.
-- -'_s 1,1;t "a,1;a-tJ n' (C 7)

= -2,0,.,.+O- _)g,W(_.,,], (cs)

where _, _(2) G (_ld_'d2:ds'd_'d_) and u(2Lll'-a)"aM, % O)l_,_;e[,m,,q "'a,a;t are given in (7.2), (7.3), (7.18), (7.33) and

(7.53). We have also put

, _:-_ °_ (C 9)D0:_,_) _ o +i(3_ - ½ario) + iba_ ) D(n_) = _)0_n+ _,_^_-sn,

¢1- ri + ½rio, _ - _ + nXo, (C 10)

- 6/(v,o_-), gt - _i2 cot 0, g, - sin _ 0, g_ _ see _ 0, g, - 2i tan 2 0, (C 11)

where _ becomes unity, at the leading order, if we use (2.5), (5.8) and (5.9). The mean flow

coefficients are normalized by

_) _(_) .(2) _(_)u.)_ 2,_r_,_f (2) _ (2) 2_(_)} (c12)l a2M, Za3Mst5

where a_/), a (2), -(') and b_ )t.3M are defined in (6.12), (6.21) and (6.24) and aO) is given in

(6.13).
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0(I)

o(o)

Fig. 1 Multi-layer structure for the non-equilibrium critical-layer analysis of multi-resonant-

triads in boundary layers. I, main boundary layer; II, inviscid ToUmien wall layer; III,

critical layer; IV, viscous Stokes layer.
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Fig. 2 Nonlinearinteractionbetween the frequency-detuned resonant-triads I and II in an

adverse-pressure-gradient boundary layer where p < 3. A, linear stage; B, parametric-

resonance stage; C, fully-coupled stage; D, frequency-detuned nonlinear-interaction

stage; E, triple-deck stage.
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